[Solved] RoBo3Dプリンターヒートベッド温度が上がらなくなりました。(その2)

image
右下にあるのが、交換用のレギュレータ。 左上に写っているのが、千住金属の期待の星LEOです。低温半田で取り外すのに便利ですし、価格的にもCHIPQUIKよりはお手ごろで助かります。モノタロウで全品10%オフのセール日に注文しています。

ヒートベッドがドライブできなくなったRAMPS基板を変えて予備品にしたところExtruderのモータードライバが駆動不足で振動していたためにドライバ設定のポテンショメーターをランタイムに調整したところ今度はATMEGA2560がご臨終したようでモータードライバーの駆動電流に比してATMEGA搭載のRegulator 1117が不足しているのか、これが臨終したもよう。SMDのレギュレータなので低温半田LEOを使って外しました。1117の臨終は二個目です。

 

 

image

元気に復活しました。今日は、弾性樹脂を使って取り回しやすい異径ジョイントを試作しています。

15mm->6mm
8mm->6mm

RoBo3Dプリンターヒートベッド温度が上がらなくなりました。(その1)

今週も必要なパーツ作成を予定していましたが、プリントフィラメントを切り替えてスタートをしていたのですが一向に進みませんでした。確認をしたところヒートベッドの温度が上がらないのです。RAMPSボードの不具合と思われますので、早速確認をしましたところ・・・問題が見えてきました。RAMPSの交換含めて調査報告を後ほどいたします。

image
ヒートベッド用のヒータ出力のターミナルが炭化していました。

 

 

 

 

 

 

フラッシュを焚くとより鮮明に・・・状況が深刻なのが解かります。
image
ターミナルでの接触から熱をもったように思えます。ヒートベッドが移動してこの配線がターミナルにストレスを与えるので接触がゆるくなり熱を持つにいたったと思われます。樹脂が溶解しています。
image
基板のパターン側にも熱からくる損傷があるかもしれません。
image
拡大すると端子のベースあたりが焼損しているような印象にみえます。

ROMライターをWindows10対応に追加しました

IMG_6408[1]組み込みの里では、少し懐かしいAT89S52などのデバイスを用いたキットのカスタマイズなどもしていて旧来ながらのROMライターも必要となります。

従来使ってきたROMライターのドライバーが署名なしでWindows8や10での環境で利用できなくなりましたので、最近のモデルを追加しました。

TL866CSというモデルで多くのデバイスに対応しています。

AVR PICにも対応しています。

 

2016-05-19 (3)2016-05-19 (1)

 

クリンピングツール入荷しました

imageQIコネクター作成などで必須な圧着機です。中華製です。以前より使ってきた里の圧着機よりも規格に合わせてサイズが3種に対応できます。

 

 

image左が里で利用してきた中華製圧着機で、今回入荷したのは、右のタイプです。

里では、QIコネクターのピンやハウジングも安価に頒布していますのでお立ち寄りの際には確認のうえ、ご用命ください。

(Solved)怪しい電子部品 DS18B20

スペック割れの嫌疑をかけられていた中華市場のDS18B20ですが、問題解決いたしました。
結論は、使い方のスペック割れで1Wireのスペックを満たしていないソフトウェアで利用していたことが判明しました。オリジナルのソフトウェアではリセットパルスが333uSで480uSの規格を割っていました。この問題は、おそらくシステムクロックの動作速度変更を行った段階で、1Wireのタイミング修正を行わなかったことに起因していると思われます。システムクロックの周波数からソフトウェアタイミングが自動的に算定されるようなdefineを指定することで解決されるはずですが、組み込み案件では、こうした問題で実機確認で終わりがちなので注意が必要ですね。
2016-05-07 (1)

あいにくと8952(8051)のコンパイラでフリーで使えるものにはコードサイズの生成制限などがあり、とりあえず逆アセンブルしてHEXファイルからパッチすることにしました。

当該の1WireのバスラインはAT89S52のPort1のビット0を使っているので書かれているMCUかからイメージファイルをHEX形式で吸い出して、それからD52.EXEでリバースアセンブルして二箇所の修正ポイントを割り出して、リセットパルスとタイミングパルスのコードをバイナリで修正しました。結果は解決となりました。ただしくロジアナも解釈メッセージをつけて、デバイスが応答しているのも確認とれるようになりました。
2016-05-07 (2)

HyGain DX-88 バーチカル復活プロジェクト (3)

image一点、接続点の同軸コネクターのはんだ付けを確認する必要があり外皮とのはんだ付けが外れているようだったのでガス半田ごてを用いてはんだ付けをしたが、トーチにしてようやくはんだ付けは確認がとれる段階になった。

トータルでの導通は得られずやはり断線が起きているようなので、今回はアンテナ側からの測定を試みた。ラップトップにUSB接続のネットワークアナライザーを用いて野外で行った。

2016-05-03 (4)結果から、アンテナ側から8.144mとなり総長から考えると、埋設区間の地下ということになるらしい。昨日の結果と合わせると誤差も含めてケーブル交換したうえで断線個所の確認を再度行うべきかと思われます。

HyGain DX-88 バーチカル復活プロジェクト (2)

image アンテナベース部品は、出来上がっていたので天候もよく、アマチュア無線をされている知人の来訪もあり手伝ってもらいながらアンテナ再設定を行った。

再構築完了後、中華無線機に接続するも思ったように受信ができない。アンテナの不具合のようだ。

バーチカルの給電点はマウントで絶縁されていて内部で同軸のM座コネクターに配線されているのだが、内部のはんだ付けが外れていると考えて再度倒して確認したところはんだ付けが外れていた。ガス半田ごてを用いて苦労しつつも再建をしてコイルで外部終端していることからM座コネクターの点で導通があることも確認できたので、内部問題なしと判断した。

 

image

ところが、解決改善をみないのである。給電点で導通確認をしたので、ケーブル端でも確認できるはずなのだが、こちらでは導通が取れない。同軸が断線しているようだ。

5DFBを20mほど引き回しているので、ベクトルネットワークアナライザーを用いてケーブル長確認を用いて断線個所の判断をすることにした。

2016-05-02 (17)やはり、ケーブルが途中で断線しているようだ、およそ16mの点とのこと。地中埋設部分からの立ち上がり部分での問題のようだ。

 

電子工作ツールを3Dプリンターで製作する。 

image image

3Dプリンターの出力精度などが安定化してきたので、ABS材料で懸案となっていた電子工作用のバイスを作ることにした。強度の必要な部品には、充填密度 を高めて対応することにした。以前の試作では、強度不足で自身の機能的に必要なねじ締めなどでそれ自身が割れてしまうという事態に遭遇したことからスライ サーの設定を変更して高密度での出力にした。(通常は25%密度で出力していた)

Thingiverseには、有用な作例が多い。無論、実際に使えるように作るには課題もありプリンターに合わせてカスタマイズしないといけない。

http://www.thingiverse.com/thing:21357 は、写真にあるプリント基板をホールドするように作られたバイスです。強度確保の目的で出力密度は1.00で充填しています。ABSフィラメントですが、0.1mmの積層とプリンターを覆って収縮対策をしながら出力しています。

ここにいたるまでに失敗作はあり、いろいろ勉強になりました。

0.1mmの積層での出力だったこともあり出力には二日ほどかかりました。

 

Hygain DX88は3Dプリンターで復活するか

image昨年9月に再建したばかりなのだが、この怪しげな季節を越えた暴風でアンテナが倒れてしまったのだ。全長7mほどになるDX-88は自立型で耐風速34mとのことなので35m以上の暴風圏に曝したということなのだが、ここ木更津も沖縄や小笠原並の暴風圏なのだろうか。

写真で解かるように、このバーチカルアンテナは可倒式のマウントにつけているのだが、毎回使うときに立てようとはいかずに今回のような事態で破損するということに陥っている。

前回の破損についても同様な形で強度的にはいつもベースマウントが壊れるようになっていた。毎回ベースアセンブリーを一式交換していたのだが、三度目になると対応策も進化する必要があると考えて、今回は曲がってしまったマウント部以外は自作対応することにして3Dプリントで破損した硬質ゴムの部品をナイロン樹脂で高密度出力し、かつ厚みをますなどして強度を高めることが出来るかどうかの挑戦をすることにした。当初は、ABS樹脂を考えたが、耐候性の点でABSは紫外線劣化が激しいということだったので手持ちのナイロンフィラメントを活躍させてみることにします。

ことの発端は、DX88の手配間違いで、ベースマウント部品のみの手配をしてしまったことが原因なのだが、なぜこの部品だけHygainのサイトでそのまま補修リストとは別に出てきているのかは不明だ。すでに二回ベースアセンブリーを手配してきたのだが、今回は間違えてマウント金具のみ手配してしまったので、この部品をベースにじっくり攻めてみよう。

とりあえず、最初の設計はThingiverseにあげてみた。
マウント金具が届くまでに部品は仕上げておこう。

image

image
もげた給電点もつけて、修正対応の全容を把握
image
ベースエレメントとこのパーツを介して接触して内部でM同軸雌座に接続されていた。