3D-Printer Fix Study Challenge (木更津高専生限定)

対象となるのは、組み込みの里で、導入してきた初代3DプリンターであるRepRapベースのRobo3D R1ですのでオープンソースで改造や活用が容易なものです。

第二の居場所として活躍予定でしたが、出戻ってまいりました。修理が必要な状況ですが、無償で必要な修理材料ならびに指導を提供します。修理期間中の里の利用料は無料でご利用いただけます。修理完了後のプリンターは無償提供いたします。

  • 募集期間 2018/12/29から2019/1/26
  • 募集対象 木更津高専の学生(個人でもチームでも)
  • 募集条件 参加者の方たちの修理活動についてはホームページで逐次公開させてもらいます。
  • 応募方法 電子メールで下記内容をお送りください。
    参加希望の方の名前、学科名、学年、メールアドレス、修理が終わったプリンタ―の活用方法について記載してください。
  • 選考結果は、1/28にメールでお知らせします。
  • 修理期間 2019/2/2から2019/3/24 (この期間は里の利用料はかかりません)
  • この期間を超える場合には、里の利用料を申し受けます。

色々と整理が必要で対策中

パーツボックスのトレイ不足を3D出力した話は前回だったが、さらに個別案件で購入したスポンサー付きの部品などを別管理にする必要も生じて対策が望まれている。そうした開発依頼作業での活用と在庫整理も兼ねて、コストパフォーマンスの良さそうなアイデアが出てきた。100円均一のセリアなどで購入できるトレイと厚手のA4ファイルケースの組み合わせだ。なかなか良いのだが・・・

続いて今回開発したのはA4Lサイズの薄手のファイルケースに内蔵させるカスタム仕様のパーツトレイでこちらは3Dで作成した。背の高さは20mmほどでファイルケースに合致している。

材料費の観点では、実際に四つの部品トレイで作ることになるが一つ100-150円程度だフィラメント代としては・・・だが。ファイルケースに綺麗にフィットするのでとても良いと自画自賛。

そして振り返って最初に試した厚手のものについても隙間を埋めるトレイを作成することでフィットすると理解したので、次回はそちらも作ることにしよう。今週は台風到来で、印刷中に停電するなどの状況もありましたので出力は半分のみです。

なくしがちな小物入れ引き出し

組み込みの里では、部品在庫収納に利用している小物入れ引き出しが沢山ついている安価なものを利用して壁に止付けている。成形精度に難があったりもするのだが、壁につけられるだけ配置してある。まだつける余地がありそうなので増設も考えたい。いただいた物もあったりしたのだが、引き出しが少なかったりしていたので、工房でネジなどの収納に使っていた。

3Dプリンターで部品をコピーしてみることにしました。

データはこちらにあります。

TA7291Pでリレー制御

IoT機器開発の依頼がありコンサル対応しています、ラッチングリレー制御をネットで行いたいということでArduinoとSakuraIOに繋がるrelayシールドと、その筐体実装のサポートをしました。プロジェクト自体は現役高専生がベンチャーの会社で任されて進めていて、組み込みの里ではそのフォローサポートならびに試作製造といったことをしています。

途中経過は、試作基板を削りで作成していましたが、最終的にシールド基板のみを開発することになりました。

量産基板には設定切り替えなどをJumperで出来るようなフットプリントを付けようとしているのですが、使っているKicadが色々と難癖をつけてきて妥協と解析対応をしつつ進めています。

若者がモノづくりの主体として関与するこうした取り組みを任されているベンチャーの方とのコラボはとても良い実体験になると思います。スマートに解決できることばかりではなく、お客様との打ち合わせなども体験しながら進めているプロジェクトの発信源は、やはり高専OBの熱い方でした。

仕様変更の調整なども踏まえて少し余計にかかりましたが、夏休み前にお話しを聞いていた時から長い高専生の夏休みの実務アルバイトは大きなインターンシップ以上のものになっていると思います。

試作基板には、仕様変更の対応でターゲット装置の遠隔監視などの観点で温度センサーが追加で実装されることになりました。ユニバーサルエリアを作らなかったので孫基板の実装となりました。

里では何年か前に話題になった例の温度センサーを使っています。(Hi)

NC加工をしてみる(4)

今回のお題は、市販の防水樹脂筐体に収めるある程度数を作ることを想定したモノづくりのお手伝いだ。里の加工で出来ることはしれているのだが、そこはベンチャー会社の人たちにしてみたら他に頼むことよりも出来るだけ作れるものなら最初にどこまで作れるのかは知りたいということらしい。

基板手配は、当初の課題だったが、サイズの問題などからEAGLEからKiCADに移行して新しい機能などを覚えて試作品としてOriminを用いたUSBCNCで削り出して試作評価というフェーズが簡単に崩れてしまった。良くも悪くも今までの使い方がCADというよりもアートワークを手で引いているようなPCBEだったりしていたことから制限を外して挑戦しようということでもあったのだが、試作用もう少し融通の利く環境構築も必要のようだ。

基板がとりあえず、KiCADのアートワーク状況を手コピーしてPCBEのスクリーンにプロットしていくのだがPCBEの柔軟な運用としてプロットポイントを自在に原点調整やピッチ変更が出来るのが幸いしてほどなく出来るのだが、あいにくと強度が必要なUSBコネクタやDCジャックの類の角穴などは折角モデルを使ったのが仇となっていたので丸で近似するしかなかった、作図は簡単だがはんだ付けの苦労はありそうだ。

これやArduinoの基板をスペーサーで保持するのだが、その設置用の穴開けが課題になりそうだということは先週のトライアルで分かった。穴あけ位置を指示する樹脂製のテンプレートを作成してそれ越しに穴あけをすることにした。これを作るのは今回は3Dプリンターで少し垂直のガイド性もつくようにした。

結局Arduino以外も含めて全体のテンプレートが丁度3Dプリンターで作れそうなので穴のサイズごとに色指示のシールを貼って効率が上がるようにしてみた。
Arduino UNOには使えないコーナーピンが一か所あり、設計上は3mmのビスを使うことになっているのだが実際にあたってしまいネジ締めが出来なかったりもしているので、ここは2.6mmのネジを一か所だけ使うようにした。そんなこともあったれして実はバタバタとしたNCデータの流用だった。転写する段階で読み間違えたりしてサイズ位置が合わなかったこともあったので、もう少しレビューを落ち着いてしたほうが良さそうだった。問題のUNOのマウントには樹脂製のスペーサーを使わないと背面のパターンも当たってショートしそうな感じもしたので手持ちのジュラコンのパーツを見つけ出してくみ上げてみた。

明日、全体試験をしてもらって来週はいよいよ顧客先で稼働評価試験となるらしい。

NC加工をしてみる(3)

あまりこだわったことがない、基板加工にも今回は、取り付け位置の制限などから外形加工をする必要があったのだが、使ったP板CADはKiCADにしたところ、基板加工機CIP100に付属してきたOriminでは対応できないことが分かり、急遽今まで使っていたPCBEで加工データの位置を取り込んで穴加工とその配線を通すという形になった。昔でいうところのアートワークを引いている感じだ。

作りたい基板サイズは45×105ほどなのでCIP100(Max 160×100)としては二枚取りが出来そうなあんばいなので外枠の一部は今回基板の縁に添わせる形で刃物の摩耗も防ぐことにした。取り付ける部品を押える目的のインシュロックを通す必要もあって角穴データは溝切の一環で外形データと通すことが出来たのだが、基板自体は四角にしかすることが出来ず一部を切り込んだ形にはできないことが判明した。対策は簡単に切り落とせそうな角穴をその位置近くに置くという代替案だ。KiCADで通らなかったデータにはDCジャックのランドパターンもあったようだが、これは少し大きめのパッドで逃げることにした。

本番の基板とパターンと部品配置だけを似せた状態でのデバッグということになる。試作動作完了となれば、基板発注という展開になる。

NC加工をしてみる(2)

微妙な配置にあるのは、今回作成したリレー制御基板の穴加工位置についたガイドである。適当にリブをつけて強度を持たせようとしているのだが、矢印をエンボスにしてあるのは、ターゲットの基板の角に寄せるためのマークである。

ABSもしくはポリカーボネートで明日作成する予定だが、下にはエポキシ基板も当てようかと思っている。実際にはシャコ万力で押さえてハンドドリルまたはボール盤であけることになりそうだ。

位置精度が必要なものは、あとArduino UNOのマウント部分もあり、同様なガイドを作成する予定だ。下の穴あけを依頼すると加工費用だけで材料の25倍以上の費用となるらしい。工賃は馬鹿にならないし、実際に先日配置の指示だけを紙に出して貼りつけて穴あけを試みたのはNGだった。少なくともオートポンチを施工すべきだったようだ。

精度を出すのが難しいことは確かにその通りなので専用冶具を3Dプリンタや基板加工機で作成するのは今風なのかもしれない。

NC加工をしてみる(1)

実用的なNC加工を直接試みようとすると現実的には、素材の固定やサイズなどの制限がありまた工夫が必要となります。里にあるNC加工装置は、オリジナルマインド社のQT100とCIP100あとはsmartDiysのFaboolLaserMiniです。

今回IoT装置となるものは、配電ボックスなどに用いられるタカチのケースなのですが、搭載部品となるArduinoや専用シールド基板などを内部のベース板に取り付けるための穴加工が必要となります。ほかにもいくつか取り付けるパーツはあるのですが、精度が必要なのは前述のものたちです。樹脂でできているベース板なのですが裏側にリブがあったりして実寸の穴位置加工図面を貼り付けてボール盤でトライしてもらいましたが、うまくいかないというのが経緯です。

この板自体は安いものですが、本来は現地でブレーカーなどを止付けたりするもので精度の必要な穴位置が要求されたりはしないものなのでしょう。一応メーカーサイトには加工受付のリンクもありましたので、クライアントの意向もあって見積もり問い合わせをしてみました。ざっくり追加の穴加工16箇所と材料込みで一枚の場合には7000円なりということで中間マージンもあるのでしょうが、さすがにクライアントさんの要望範囲ではなさそうなので丁重にメーカーさんにはお断りを入れつつ、数量的には100台くらいの加工までをしなければならないので再度見積もりはお願いしました。

精度の必要な穴加工を実現するための冶具作りをNCで行うのが現実的かと思われましたのでガラエポ基板かアルミ板を加工してブロック単位でゲージを作り、さらに必要であれば垂直精度を助けるためのガイドパーツを3Dプリンターで作ろうというのが今回のNC加工トライアルとなります。大きなサイズのNCフライスがあればよいのですが、あいにくと160×100がサイズ制限となるので精度の必要な基板取り付け部分などのブロック単位で冶具を作ることにしました。

この週末は、その報告ができるかと思います。

大型タイマーパネルを作る

大型のタイマーを作ることになり、開発要請元のご希望はアクリル板でカバーしてほしいということでしたので背面をマットな黒アクリル、前面を透明アクリル板で構成して間にNeoPixelのLEDを並べるというもので、透明モールを使うというものと、防水カバー付きのNEOPIXELをそのまま使うというものの2種類を作りました。アクリル板を挟み込むのはアルミチャンネルで、コーナーにカバーとコアとなる部品を2つ3Dプリンターで作り構成しています。

コアとなる3Dパーツと45度加工したアルミチャネル

Arduino UNOとBT-HC05

コーナーパーツは外側カバーと、内部コアです。 この積層方向はちょっと弱かった気がします。

外殻部品でなかのコアとアルミフレームを締め付けています。

NEOPIXELを150球使っています、電源は5V 8Aというものがアマゾンで見つかりましたが、NEOPIXEL用途のようですね。セグメント表示用のアプリは、この後作りました。